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Lecture 19

Sensitivity Functions
• Comparison of Filter Structures

• Performance Prediction
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What causes the dramatic differences in performance between these two structures?

How can the performance of different structures be compared in general?
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Modeling of the Amplifiers
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Different implementations of the amplifiers are possible

Have used the op amp time constant in these models 
-1 = GB

Review from last time



Effects of GB on poles of  KRC and -KRC Lowpass Filters
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Review from last time
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GB effects in KRC and -KRC Lowpass Filter
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• Analytical expressions for ω0, Q, poles, zeros, and other key parameters are unwieldly in 

these circuits and as bad or worse in many other circuits (require solution of 3rd order 

polynomial!!) 

• Sensitivity metrics give considerable insight into how filters perform and are widely used to 

assess relative performance

• Need sensitivity characterization of real numbers as well as complex quantities such as 

poles and zeros

• Since analytical expressions for key parameters are unwieldly in even simple 

circuits, obtaining expressions for the purpose of calculating sensitivity 

appears to be a formidable task ! 

• If sensitivity expressions are obtained for a given structure, it can be catalogued 

rather than recalculated



Sensitivity Characterization of Filter Structures

Let F be a filter characteristic of interest

F might be ω0 or Q of a pole or zero, a band edge, a peak frequency, a BW, 

T(s), |T(jω)|, a coefficient in T(s), etc

Can express F in terms of all components and model parameters as

F=f(R1, …Rk1, C1, … Ck2, LI1,…LIk3, τ1, … τk4, W1,…Wk5, L1, …Lk5,….)

The differential dF of the multivariate function F can be expressed as
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Define the standard sensitivity function as
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Is widely used except when x or f assume extreme values of 0 or ∞

Define the derivative sensitivity function as 
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xs Is more useful when  x or f ideally assume extreme values of 0 or ∞



Consider the normalized differential dF
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This approximates the relative (percent if multiply by 100) change in 

F due to changes in ALL components
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This can be expressed in terms of the standard sensitivity 

function as

This relates the relative (percent if multiply by 100) change in F 

to the sensitivity function and the relative (percent if multiply by 

100) change in each component



Consider the normalized differential
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This can be expressed as

Often interested in                evaluated at the ideal (or nominal value)
dF
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The normalized differential – a different perspective

Consider the multivariate Taylors series expansion of F
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The normalized differential – a different perspective

Consider the multivariate Taylors series expansion of F
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Note this is essentially the same expression that was arrived at from the 

sensitivity analysis approach
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Dependent on circuit structure (for some 

circuits, also not dependent on  components)

Dependent only on components 

(not circuit structure)

The sensitivity functions are thus useful for comparing 

different circuit structures

1
i

f i
x

iN

dxdF
S

F x=

 
= • 

 


N

N

k

X
iX

The variability which is the product of the sensitivity 

function and the normalized component differential is 

more important for predicting circuit performance
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Variability Formulation

Variability includes effects of both circuit structure and 

components on performance

If component variations are small, high sensitivities are acceptable

If component variations are large, low sensitivities are usually critical 

Often interested in circuits whose performance is not affected 

by changes in component values.  In such cases:

But if interested in trimmable functions, low 

sensitivities not useful
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Thus a 1% increase in R will cause approximately a 1% decrease in ω0

a 1% increase in C will cause approximately a 1% decrease in ω0
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At this stage, this is just an observation about summed sensitivities but later 

will establish some fundamental properties of summed sensitivities
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Consider

The nominal value of the time constant of the op amps is 0 so this expression 

can not be evaluated at the ideal (nominal) value of GB=∞   (equivalently τ=0)

Let  {xi} be the components in a circuit whose nominal value is not 0

Let  {yi} be the components in a circuit whose nominal value is  0
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Low sensitivities in a circuit are often preferred but in some 

applications, low sensitivities would be totally unacceptable

Examples where low sensitivities are unacceptable are circuits 

where a charactristics F must be tunable or adjustable!



Some useful sensitivity theorems
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Some useful sensitivity theorems (cont)
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Stay Safe and Stay Healthy !



End of Lecture 19
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Example:

Assume ideally   R=1K, C=3.18nF so that IO=50KHz

( ) 0I1
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RCs s
Ideally I0 termed the unity gain freq of integrator

Assume actually  GB=600KHz, R=1.05K, and C=3.3nF

a) Determine an approximation to the actual unity gain frequency using a 

sensitivity analysis

b) Write an analytical expression for the actual unity gain frequency

I0 is one of the most important parameters of an integrator used in a filter
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Example:

Assume ideally   R=1K, C=3.18nF so that IO=50KHz

Actually  GB=600KHz, R=1.05K, and C=3.3nF

Observe
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Solution:

( ) 0NI1
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0.829 41.450A 0NI I KHz =

ION=50KHz

Note that with the sensitivity analysis, it was not necessary to ever determine I0A  !!

a) Determine an approximation to the actual unity gain frequency using a 

sensitivity analysis

b) Write an analytical expression for the actual unity gain frequency
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Must solve this quadratic for I0A

Although in this simple numerical example, it may have been easier to go directly 

to this expression, in more complicated circuits sensitivity analysis is much easier

Solving, obtain  IOA=42.6KHz

Note this is close to the value obtained with the sensitivity analysis
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( ) 0NI1
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• Note that with the sensitivity analysis, it was not necessary to ever 

determine I0A  !!
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• Though the active sensitivity analysis was tedious, major simplifications 

for active sensitivity analysis will be discussed later. 

• The sensitivity analysis was analytical, and only at the end was a 

numerical result obtained

• A parametric solution is usually necessary to compare different structures 

• Though a closed-form analytical expression for IOA could have been 

obtained for this simple circuit, closed-form solutions for parameters of 

interest often do not exist !



Circuits have many sensitivity functions

How can sensitivity analysis be used to 

compare the performance of different circuits?

If two circuits have exactly the same number of sensitivity 

functions and all sensitivity functions in one circuit are lower than 

those in the other circuit, then the one with the lower sensitivities 

is a less sensitive circuit

But usually this does not happen !

Designers would like a single metric for comparing two circuits !
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(for some circuits, also not dependent 

on components)

Dependent only on components 
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Actually dependent upon component ratio!
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It is often the case that functions of interest are

of the form expressed in the hypothesis of the 

theorem, and in these cases the previous claim is 

correct



Theorem:   If f(x1, ..xm) can be expressed as 

                                            

where {α1, α2,… αm} are real numbers, then the sensitivity terms in           

 

are dependent only upon the circuit architecture and not dependent 

upon the components and and the right terms are dependent only upon 

the components and not dependent upon the architecture

1 2

1 2 ...
m

mf x x x
 

=

1
i

f i
x

iN

dxdf
S

f xN

k

X
i=

 
= • 

 


This observation is useful for comparing the performance of two or more circuits 

where the function f shares this property



Metrics for Comparing Circuits

Schoeffler Sensitivity

1
i

f

xS
m

i


=

= 

Summed Sensitivity

Not very useful because sum can be small even when individual 

sensitivities are large

1
i

f

xS
m

S

i


=

= 

Strictly heuristic but does differentiate circuits with low sensitivities from those 

with high sensitivities



Metrics for Comparing Circuits

1
i

f

xS
m

i


=

= 
Often will consider several distinct sensitivity functions to consider 

effects of different components

1
i

f

xS
m

i


=

= 

i

f

RSR

All resistors

 = 

i

f

CSC

All capacitors

 = 

i

f

OA

All op amps

 =  s



Homogeniety (defn)

A function f is homogeneous of order 

m in the n variables {x1, x2, …xn} if

f(λx1, λx2, … λxn ) = λmf(x1,x2, … xn)

Note:  f may be comprised of  more than n variables



Theorem:   If a  function f is homogeneous of order m 

in the n variables {x1, x2, …xn} then

i

n
f

x
i=1

 = mS

Proof:

Differentiate WRT λ

( ) ( ), ,... , ,...1 2 n 1 2 nf x x x f x x xm   =

( )( )
( )1

, ,...
, ,...

1 2 n

1 2 n

f x x x
f x x xmm

  




−


=


( )1... , ,...1 2 n 1 2 n

1 2 n

f f f
x x x f x x x

x x x

mm
  

−  
+ + + =

  



( )1... , ,...1 2 n 1 2 n

1 2 n

f f f
x x x f x x x

x x x

mm
  

−  
+ + + =

  

Simplify notation

...1 2 n

1 2 n

f f f
x x x f

x x x

mm
  

  
+ + + =

  

...1 2 n

1 2 n

x x xf f f

x f x f x f

mm
  

  
+ + + =

Divide by f

Since true for all λ, also true for λ=1, thus

...1 2 n

1 2 n

x x xf f f

x f x f x f
m

  
+ + + =

i

n
f

x
i=1

 = mS

This can be expressed as



Theorem:   If a  function f is homogeneous of order m 

in the n variables {x1, x2, …xn} then

i

n
f

x
i=1

 = mS

( ) ( ), ,... , ,...1 2 n 1 2 nf x x x f x x xm   =

The concept of homogeneity and this theorem were 

somewhat late to appear

Are there really any useful applications of this rather odd 

observation?



Let T(s) be a voltage or current transfer function

 (i.e. dimensionless)

Observation:   Impedance scaling does not change 

any of the following, provided Op Amps are ideal:

T(s), T(jω), |T(jω)|, ω0, Q, pk, zk

So, consider impedance scaling by a parameter λ

R R→

L L→

/C C →

Thus, all of these functions are homogeneous of order  m=0 

in the impedances

( ) ( )0, ,... , ,...1 2 n 1 2 nf x x x f x x x   =

For these impedance invariant functions



Let T(s) be a Transresistance or Transconductance 

Transfer Function
Observation:   Impedance scaling does not change 

any of the following, provided Op Amps are ideal:

ω0, Q, pk, zk, band edge

So, consider impedance scaling by a parameter λ

R R→

L L→

/C C →

Thus, all of these functions are homogeneous of order  m=0 

in the impedances

( ) ( )0, ,... , ,...1 2 n 1 2 nf x x x f x x x   =

For these impedance invariant functions

(these are impedance invariant functions)



Theorem 1: If all op amps in a filter are 

ideal, then ωo, Q, BW, all band edges,  

and all poles and zeros are homogeneous 

of order 0 in the impedances.

Theorem 2: If all op amps in a filter are 

ideal and if  T(s) is a dimensionless transfer 

function, T(s), T(jω), | T(jω) |,               , are 

homogeneous of order 0 in the impedances
( )T jω



Theorem 1: If all op amps in a filter are 

ideal, then ωo, Q, BW, all band edges,  

and all poles and zeros are homogeneous 

of order 0 in the impedances.

Proof of Theorem 1

These functions are all impedance invariant so if follows trivially that they are 

homogeneous of order 0 in all of the impedances



Theorem 3: If all op amps in a filter are 

ideal and if  T(s) is an impedance transfer 

function, T(s) and T(jω) are homogeneous 

of order 1 in the impedances

Theorem 4: If all op amps in a filter are 

ideal and if  T(s) is a conductance transfer 

function, T(s) and T(jω) are homogeneous 

of order -1 in the impedances



Corollary 1: If all op amps in an RC active 

filter are ideal and there are k1 resistors and k2 

capacitors and if a function f is homogeneous of 

order 0 in the impedances,  then 

1 2

i i

k k
f f

R C
i=1 i=1

S = S 

Corollary 2: If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors then
1

i

k
Q

R
i=1

S = 0

2

i

k
Q

C
i=1

S = 0



Corollary 1: If all op amps in an RC active 

filter are ideal and there are k1 resistors and k2 

capacitors and if a function f is homogeneous of 

order 0 in the impedances,  then 

1 2

i i

k k
f f

R C
i=1 i=1

S = S 

Corollary 2: If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors then
1

i

k
Q

R
i=1

S = 0

2

i

k
Q

C
i=1

S = 0



Corollary 1:  If all op amps in an RC active filter are ideal 

and there are k1 resistors and k2 capacitors and if a 

function f is homogeneous of order 0 in the impedances,  

then
1 2

i i

k k
f f

R C
i=1 i=1

S = S 

Proof of Corollary 1:

Since f is homogenous of order zero in the impedances, z1, z2, … zk1+k2, 

0
1 2

i i

k k
f f

R 1 C
i=1 i=1

S S + =

0
1 2

i

k k
f

z
i=1

S
+

 =

0
1 2

i

k k
f f

R
i=1 i=1

S S
iC

 − =

 

 

Proof:



Proof of Corollary 2:

θ

Im

Re

Original 

Root

Scaled 

Root

Recall:

Theorem:  If all components are frequency 

scaled, roots (poles and zeros) will move 

along a constant Q locus

Frequency Scaling:  Scaling all frequency-

dependent elements by a constant

L ηL

C ηC

→

→

XIN XOUTT(s) XIN XOUT
TFS(s)

Frequency 

Scaling

s
η

s
→

Proof of Theorem:

( ) ( )FS s
η

s
=

T T ss =



Proof of Corollary 2:

θ

Im

Re

Original 

Root

Scaled 

Root

Recall:
Theorem:  If all components are frequency 

scaled, roots (poles and zeros) will move 

along a constant Q locus

Proof:
( ) ( )FS s

η

s
=

T T ss =

Let p be a pole (or zero)  of T(s)

( )T p =0

( ) ( )FST T T s
s

η
s

 
= = 

 

p
η

p
=

Since true for any variable, substitute in p

( ) ( ) 0FST T p
p

T
η

p
 

= = = 
 

consider

Thus p is a pole (or zero) of TFS(s)



Proof of Corollary 2:

θ

Im

Re

Original 

Root

Scaled 

Root

Recall:
Theorem:  If all components are frequency 

scaled, roots (poles and zeros) will move 

along a constant Q locus

Proof:

p
η

p
=

Thus p is a pole (or zero) of TFS(s)

p pη=

Express p in polar form

jβp = re
jβ= p  p =  re 

Thus p and p have the same angle

Thus the scaled root has the same root Q



Proof of Corollary 2:

Recall:

θ

Im

Re

Original 

Root

θ

Im

Re

Impedance 

Scaled Root 

θ

Im

Re

Original 

Root

Frequency 

Scaled Root

Im
pdeance 

Scalin
g

Frequency 

Scaling

Original 

Root

Impedance and Frequency Scaling



Corollary 2: If all op amps in an RC active 

filter are ideal and there are k1 resistors and k2 

capacitors then                        and 1

i

k
Q

R
i=1

S = 0

Proof of Corollary 2:

Since impedance scaling does not change pole (or zero)  Q, the pole (or 

zero) Q  must be homogeneous of order 0  in the impedances

31 2

i i i

kk k
Q Q Q

R 1/C L
i=1 i=1 i=1

S + S + S = 0  

(For more generality, assume k3 inductors)

Since frequency scaling does not change pole (or zero)  Q, the pole (or 

zero) Q  must be homogeneous of order 0  in the frequency scaling 

elements 32

i i

kk
Q Q

C L
i=1 i=1

S + S = 0 

(1)

(2)

2

i

k
Q

C
i=1

S = 0



Proof of Corollary 2:

31 2

i i i

kk k
Q Q Q

R 1/C L
i=1 i=1 i=1

S + S + S = 0  

32

i i

kk
Q Q

C L
i=1 i=1

S + S = 0 

(1)

(2)

From theorem about sensitivity of reciprocals, can write (1) as

31 2

i i i

kk k
Q Q Q

R C L
i=1 i=1 i=1

S - S + S = 0   (3)

It follows from (2) and (3) that

31

i i

kk
Q Q

R L
i=1 i=1

S -2 S = 0 

Since RC network, it follows from (4) and (2)  that 

0
1

i

k
Q

R
i=1

S =

(4)

0
2

i

k
Q

C
i=1

S =
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